
Technical Report:

Flow Past a Descending Balloon
NASA Award NAG5-5292

Period: 18 May 2000 - 30 November 2001

Balloon Program Office

NASA/GSFC/WFF

Wallops Island, VA

Submitted to:

Planetary Aerobot Program

NASA/JPL

Pasadena, CA

Frank Baginski, Principal Investigator

Department of Mathematics

The George Washington University

Washington, DC 20052

31 December 2001



Abstract

In this report, we present our findings related to aerodynamic loading of partially inflated balloon

shapes. This report will consider aerodynamic loading of partially inflated inextensible natural

shape balloons and some relevant problems in potential flow. For the axisymmetric modeling, we

modified our Balloon Design Shape Program (BDSP) to handle axisymmetric inextensible ascent

shapes with aerodynamic loading. For a few simple examples of two dimensional potential flows,

we used the Matlab PDE Toolbox. In addition, we propose a model for aerodynamic loading

of strained energy minimizing balloon shapes with lobes. Numerical solutions are presented for

partially inflated strained balloon shapes with lobes and no aerodynamic loading.
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Chapter 1

Aerodynamic loading

1.1 Aerodynamic loading of natural shape balloons

1.1.1 Background

The equations for a natural balloon shape were first derived by researchers at the University of

Minnesota (see [1]). A derivation of these equations is presented in [7, Sec. V]. Extensive com-

putations were carried out on a digital computer by Smalley (see, e.g., [15]-[ 16]). Axisymmetric

ascent shapes were considered in [3]. We follow the approach in [3], modeling the balloon as an

axisymmetric inextensible membrane. However, in the present work, we add caps and aerody-

namic forces to the model for axisymmetric natural shape balloons. Balloons constructed from a

single shell, but with sections of different material properties can also be considered. We begin

with some notation and then provide some physical justification for the governing equations.

1.1.2 Equilibrium equations

Since we seek axisymmetric solutions, we need to find a generating curve s -+ (z(s), r(s)), where

s is the arc-length. Let gd be the total length of the generating curve. We can express the solution

as x(s,q)) (see Figure 1.1), where s C [0,ga], q) E [0, 27t], and

x(s,q)) = r(s)el(q))+z(s)e3(q)),

el(q)) = cosq)i+sinq)j,

e3(q)) = k.

It is useful to define e2(q)) to be the unit vector which completes the right-hand triad (el (_), e2 (q)), e3 (q))},

e2(q)) = e3 (q)) × el (q)) --- - sinq)i + cosq)j. (1.1)



Theballoon'sshapeis defined by the parametrized surface,

S= [o,2rc]}. (I .2)

At each point along the curve, s -+ x(s, d_), the tangent vector is given by

a(s,_) - -_s (s,_) --- sin0(s)el (_)+ cos0(s)e3(q)), (1.3)

where 0(s) is the angle between a and e3(dO) (see Figure 1.1), z_(s) = cos0(s) and r'(s) = sin0(s).

The inward pointing normal is

b(s,_) = a x e2(_) = -cos0el (_) + sin0e3(dO). (1.4)

Let so E (0, gd), and let the vector nl (so, _) denote the resultant stress defined at each point of

the curve _ --+x(so, _). Then n_ (so, _) represents the density of the resultant contact force generated

by the part of S with s > so acting on the portion of S with s < so. Similarly, let 0 _< dOo< 2n

and let n2(s,¢o) denote the resultant stress defined at each point of the curve s --+ x(s,_). The

vector n2(s, Oo) represents the density of resultant contact force generated by the part of S with

_0 _< _ < dOo+ e acting on the part of S with _0 -e < 0O< _0. We choose e > 0 small enough

that 0 < q_o- E and _0 + _ <_ 2ft. Both nl and n2 are measured per unit length in the deformed

configuration.

Because the balloon is modeled as a membrane, we can ignore all bending moments and

couples. Furthermore, under the assumption of axisymmetry, we can write the contact forces as

nl(s,_) --= (Ym(S)a(s,_),

n2(s, ) =

where a m is the meridional stress and C_cthe circumferential stress. Next, we consider the equilib-

rium of a test patch A, where

A = {x(¢,v) ls0<_<_s, 0<_V_<_},

for some so ¢ (0, Ca) and q_¢ (0, 27t). The forces acting on A are the internal forces, nl (s, _) and

n2(s, d_), and the external forces,

f(s, ,) = -p(s)b(s, dp) - w(s)e3 (_)) - fo(s)e3((p), (I .5)

where p is hydrostatic pressure due to the difference between the densities of the lifting gas and

the ambient air, w is balloon film weight, and fo is the aerodynamic pressure density due to drag.

All external forces are measured per unit area in the deformed configuration.



In general,thedragonasubmersedbodyexertedbyafluid thatis in motionthroughthefluid
is

FD= --½PairCOAD]VB-- Vair](VB-- Vair), (1.6)

whereCo is the drag coefficient, Pair is the density of the air, AD is the area of the projection of

the body on the plane perpendicular to the direction of motion, VB is the velocity of the balloon,

Vair is the velocity of the atmosphere (see [7, p. II-13] and [10, Sec. 4.3]). In our applications, the

velocity of the balloon will be in the +k directions. We specify the magnitude of the velocity of

the balloon IvBI = vB and assume that [¥air] = O. For a descending balloon, FD is given by

1 2
FD : -- _ PairCDADVBk. (1.7)

We define fo (s) = Fo'e3 (q_), and it follows from Eq. (1.7) that the aerodynamic pressure density

is

fo(s)= ' 2-- -_PairfD VBAD. (1.8)

From Eq. (1.8), we see that fD(s) can be expressed as

1 v2IfD (s) = -- _ PairCo B [-rt/2,0](O(s)) sin 0(s), (1.9)

where I is the indicator function, i.e.,

1, xE[a,b]I[a'b](X) = O, x q_ [a,b]

We will write fo(O) to emphasize the dependence of fo on 0 = 0(s). The parameter Co depends

on a variety of factors (see [7, p. II-13]); for a descending balloon, we will assume Co = 0.8. For

an ascending balloon, fD is similarly defined with Co = 0.4 and indicator function I[0,rt/2]. Note,

for an ascending balloon fD >_ O, while for a descending balloon fD <_ O. The caps will be modeled

as an added thickness, so w depends on s.

The total force acting on A is

f * m(so)a(so,0 : .In Om(s)a(s, lg)r(s)d_- V)r(so)dllt

S S S (_

q- fsl _c(_)e2(*)d_-fsl _c(_)e2(0'd_q- fs0 fo f(_'_ll) r(_)dlgd_" (,.,0)

Differentiating Eq. (1.10) with respect to s and _ and using a 2/a = we are lead to the

following equilibrium equations,

_s (r_ma) _ _cel (_)) qt_ El= O. (1 l)
o _

In this report, when discussing a descending (or ascending balloon), we ignore the dynamics

of the balloon flight and assume that the balloon is in a quasi-static equilibrium state as given by

Eq. (1.11).
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Figure 1.1: Generating curve for a natural-shape balloon (at float)

1.1.3 The natural-shape model equations

In this section, we formulate the natural-shape model, including boundary conditions for float and

descent shapes (ascending shapes can be considered with some slight modifications). Projecting

Eqs. (1.11) onto the e3(_) and el (_) directions, we obtain,

d (rcm cos 0) - rw - prsin 0 - rfo(O), (1.12)
0 -- ds

d (r(y m sin 0) - ¢_c+ prcos 0, (1.13)
0 = d-_

respectively. After carrying out the differentiation and rearranging terms in (1.12)-(1.13), we

obtain

0 = d(rcm)cosO-(rc_m)sinodO-rw-prsinO-rfo(O), (1.14)
as-- as

d
(rOm) sin 0 + (r(Ym) cos 0_--_ - (5c + prcos 0.0 -- ds

If we substitute p = b(z + zo), where z0 is the distance from the zero-pressure level to the bottom

of the balloon and b is the specific buoyancy of the lifting gas, and solve for dO/ds and d(rcJm)/ds,

we obtain

dO

(ro_n)_ss = C_cCOS0- rwsin0- br(z+zo) - rfD(O) sin0, (1.15)

d (rcm) = CcsinO+rwcosO+rfD(O)cosO. (1.16)

While b is assumed to be known as a function of altitude, the value of b depends on a number of

parameters (e.g., b = b(Ta, Tb, Pa, Ps) where Ta is temperature of the air, Tg is the temperature of
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thegas,Pais thethedensityof theair,and19gis thedensityof thegas).SeeAppendicesA-B for
furtherdetailsonthecalculationof b. The zero-pressure level z0 is determined during the solution

process. Normally, we assume z0 = 0 and vB = 0 at float. However, if vB -¢ 0, we can also compute

a natural shape.

Since the generating curve is parametrized by arc-length, we see that

dz dr

ds - cos0 and dss = sin0. (1.17)

It will be convenient to define the total film load T in the meridional direction, i.e.,

T = 2rCrOm. (1.18)

Multiplying both Eqs. (1.15)-(1.16) by 2_, substituting T for 27trOm, and setting Oc = 0 (an as-

sumption of the natural shape), we have

dO
-- -2rcr(wsinO+b(z +a) + fo(O) sin0) IT, (1.19)

ds
dT

-- 2_r(w+ fo(O))cosO. (1.20)
ds

For applications considered here, we will assume that a load L is suspended from the base of

the balloon. Thus,

T (0) = L/cos 00, (1.21)

where 0(0) = 0o and 00 is one-half the "cone-angle" at the base of the balloon (see Figure 1.1).

Note, 00 is not known apriori and must be computed based on certain parameter values and bound-

ary conditions. If there is no load at the top of the balloon, then 0 = -7t/2 at the top.

1.1.4 Problem formulation using the parallel shooting method

Standard Model

The governing differential equations for a natural-shape balloon in terms of T are

dO

ds - -2n:r(wsin0 + b(z + zo) + rfo( O) sin0)/T, (1.22)

dT

ds 2rcr(w+ fo(O))cosO, (1.23)

dz
- cos 0, (1.24)

ds
dr

- sin0. (1.25)
ds



At the top of the balloon, we assume

0(g) - _-n, (1.26)
r(e) = 0.

The initial conditions for Eqs. (1.22)-(1.25) are

0(0) = 00,
T(0) = L/cos00,
z(0) = 0, (1.27)
r(0) = 0.

For a given pair (00,g) and weight density w(s), Eqs. (1.22)-(1.25) can be integrated over the

interval 0 < s < g beginning with the initial conditions in Eqs. (1.27). Using a shooting method,

one determines (00, g) = (00,d, gd) and the functions 0(s; 00,d, gd), T(s; O0,d,gd), Z(S; 00,d, gd), and

r(s; 00,d, ga) that satisfy Eq. (1.22)-(1.25), and Eqs. (1.26), i.e.,

0(e ;00,d,e ) = -In, (1.28)
r(ed;Oo,d,ed) = O.

Such a solution automatically satisfies Archimedes principle. For if we multiply Eq. (1.14) by 2n,

integrate from s = 0 to s = gd, and used the identity,

we obtain

r(z+zO)_ss 1 d (r2(z_t_zo)) lr2dZ '-- 2 ds 2 ds

fO gd--T(Oo,d) COS(00,d) = 2n wrds - b V - FD, (1.29)

and after reaminging terms,

L + WB = b V + FD, (1.30)

where WB is the total weight of the balloon system (shell, caps, and load tapes) and FD is the total

drag.

In the natural-shape model in [3], the weights of the caps and load tapes were added to the

payload. In the model presented here, the balloon system includes two caps that are modeled as an

added thickness. We will assume that the number of gores in a complete shape is n8. The weight

of the load tapes will be incorporated by modifying w appropriately. The lengths of the generators

for the caps are denoted by cl, c2, respectively and are assumed to be known. For a given g, let

sl = g - cl and s2 = g- c2 denote the location of caps' edges. This means that w(si +0) :fi w(si - O)

for i = 1,2 and dO/ds and dT/ds are discontinuous (another discontinuity arises when fo¢ 0).

Next, we outline a parallel shooting method for computing a design shape with a variable

thickness. See [13] and [14] for a discussion of the parallel shooting method. In the following, we

9



denotethelengthof thefirst, second,andthird intervalby 11= s1, 12 = s2 - Sl, and 13 = g - s2,

respectively. We divide ngWt by 2for(s) in order to get the average weight density of tape with

respect to area. The total length g is not known beforehand and will be computed as part of the

solution process. We define w(s) as follows,

w(s) = Wfilm(S) + ngWt/(2rcr(s)), 0 < s < e,

where

Wf, 0<s<ll
wfilm(s) = 2wf, II < s <_ 12 , (1.31)

3wf, 12<s<g

wf is the weight density of a single layer of balloon film, wt is the load tape weight density and ng

is the number of gores. Eq. (1.31) can be easily modified to accommodate balloons with varying

material properties, other than the thickness due to the caps. Eqs. (1.22)-(1.25) are equivalent to

dOi
-- 2rtri(wisinOi+b(zi+zo) + fD(Oi)sinOi)/Ti, (1.32)

ds

dTi
- 27tri(wi+fo(Oi))cosOi, (1.33)

ds

dzi
-- = cos0i, (1.34)
ds

dri
-- sin 0i, (1.35)

ds

for si_ 1 <_ s < si and i = 1,2,3, with the convention that so = 0 and s3 = g. For a function such

as w(s), we will follow the convention that wi(s) = w(s) for si-1 < s < si, and similar defini-

tions for the other relevant functions Oi, Ti, zi, ri. Eqs. (1.32)-(1.35) are supplemented by the initial

conditions,

o_(o) = o°,

_r_(o) = L/cosO°,

rl(O) = O,

z,(o) = o,

Oi(si) = o?+1, i = 1,2,

(1.36)

r/(,i) o= T/+I, i = 1,2,

Zi(Si) = Z_+1, i= 1,2,

ri(si) = rO+l, i= 1,2.

10



{01' 02,TI0, "_0 0 0 r 0, r0 } and the implicit pa-Eqs. (1.36) involve nine explicit free parameters 0 o 12,Zl,Z2,

rameter £. Using the conditions at the top of the balloon given by Eq. (1.28), we are led to ten

auxiliary conditions involving the unknown parameters,

Oi(Si)--_ 00+1, i= 1,2,

Ti(si) o: Ti+l, i:1,2,

(1.37)

r3(g) ---- 0,

03(e) =

By construction, the functions 0(s) = Oi(s), T(s) = Ti(s), r(s) = ri(s ), and z(s) = zi(s) for i ----1,2, 3

are continuous on 0 < s < gd.

Following the approach of [ 13], a new independent variable g is introduced on each interval

by the transformation

8= (S--'Ci)/li, i= 1,2,3,

where z_ = 0, 'c2 = I_ and "_3= 1_+ 12. By construction, 0 < g < 1 on each subinterval. Let _i =

zi(g), ri = ri(g) .... and so on. In the rescaled coordinates, we find Eqs. (1.32)-(1.35) can be written

as

dOi
-- 2rt_ili(wisin()i+b(_i+zo)+ fo(()i)sinOi) /Ti, (1.38)

dg

-- 27_ili(w i + fD(()i))COS()i, (1.39)
dg
d_i

-- licos()i, (1.40)
dg

-- lisin()i, (1.41)
dg

for/= 1,2,3.

11



Theauxiliaryconditionsin therescaledcoordinatesare

0i(1) = 00+1, i=1,2,

_'(1) = T//O1, i= 1,2,

?i(1) = ?0+1, i=1,2,

_i(1) = Z_+I, i= 1,2,

 3(1) = o,

(1.42)

 3/e) --

The problem of computing a standard natural-shape balloon is to find a solution of Eqs. (1.38)-

(1.41) on the interval 0 < g < 1 satisfying Eqs. (1.42) with vB - 0 and z0 --- 0.

Natural shape design with drag

Eqn. (1.30) suggests there is a one-parameter family of design shapes, parametrized by vs.

We make the standard assumptions that Oc = 0 and z0 = 0, but do not assume that vB is zero. The

net effect is that the volume of the design shape is reduced and the balloon is taller and narrower

for decreasing vB. Natural shape balloons with drag will be computed in Section 1.5.2. A natural

shape design with drag is a solution of Eqs. (1.38)-(1.41) on the interval 0 < g < 1 satisfying

Eqs. (1.42) with vB -¢ 0 and z0 = 0.

1.1.5 Partially inflated natural shape balloons

In the following, we assume that the design shape is known and the generating curve for the design

shape is

0 < s < ed.

If vB = 0, in our exposition, we assume that

bV=bdVd (1.43)

where Vd is the design volume, bd is the buoyancy at float, and V is the current volume. Eq. (1.43)

implies that b = bd Vd/V. Since V < Vd, the balloon envelope is not fully deployed. If v_ _ 0,

we assume b = zbk, and Archimedes Principle and Eq. (1.30) imply that the volume must satisfy

V= (WB+L-FD)/b.

12



Toaccountfor excessmaterial,wemodifythefilm weightdensity(replacingw(s) -+ w(s)Rd(s)/r(s)).

In particular, Eqs. (1.22)-(1.25) are replaced by (see [3])

dO

ds - --2r_(Rd(s)wsinO + br(z + zo) + rfD(O)rsinO) /T, (1.44)

dT
- 2rt(Rd(s)w+ rfo(O))cos0, (1.45)

ds
dz
-- : cos0, (1.46)
ds
dr
-- : sin0. (1.47)
ds

Since we assume that the generating curve is inextensible, gd is constant, and we introduce

the zero-pressure level z0 as the parameter to be determined. In particular, we replace Eqs. (1.26),

by

0(ed;0°,z0/=
(1.48)

r(ed;O °,zo) = O.

When the volume of the balloon gets very small, 0° is nearly zero, and it virtually impossible

to solve Eqs. (1.48) with an ordinary shooting method. This problem was circumvented in [3], by

subdividing 0 < s < ga and solving the governing equations with a parallel shooting method. For

the present application, we subdivide the three intervals [0, ll], [ll, 12], [12,ed]. For a given subdivi-

sion obtained by adding adding new break point sk, four additional parameters {0 °, T°, 0 0r/_, zk } are

introduced with four additional auxiliary equations,

= o0,

(1.49)

= zo

After relabeling of quantities, for n subdivisions there will be a total of 2 + 4(n - 1) parameters to

be determined, i.e.,

zo,_O,oO, TO, rO, ovi 2 2 i 0 0 o 0Z2_. • ._0n_l,Tn_ 1, rn-l,Zn-1.

The auxiliary equations are rescaled in the same manner as Eqs. (1.38)-(1.41).

13



1.1.6 Numerical results

Standard design shape

In the following, we present results on descending axisymmetric inextensible natural shape bal-

loons using the parallel shooting method described in Section 1.4. We consider a design shape

based on the parameters in Table 1.1. The values in Table 1.1 correspond roughly to a solar Mont-

golfiere balloon made of 3.5 micron mylar with a payload of 6 kg. The examples were chosen

to illustrate how the shapes varies as certain parameters change. We first compute a design shape

with vB = 0. The height and diameter of the design shape is shown in Table 1.1. We then compute

shapes for x = 2 and x = 5. When vB = 0 and x = 2, we find V = 0.5 Va. When vB = 0 and x = 5,

we find V :- 0.2 Ira. In Figures 1.2- 1.3, the design shape profile is shown to the left of the partially

inflated ascent shape. Plots of 0(s), T(s), r(s), z(s) are also shown.

In Figure 1.2(a), we present an ascent shape with V = 0.5 Va. To eliminate drag from our

model, we set Co = 0. The variation in shading indicate the subintervals used in the parallel

shooting method (8 subintervals were used). Next, we set Co : 0.8 and computed a corresponding

solution shown in Figure 1.2(b). Because of Archimedes Principal (see Eq. (1.30)), if we maintain

the same b and increase Fo, then the effective volume V must decrease. In the zero drag case,

the total meridional tension increases monotonically. With drag acting on the lower portion of the

balloon, the tension is reduced. Next, we increased the velocity and air density and considered

shapes with a smaller volume. In Figure 1.3(a), we present an ascent shape with V = 0.2 V_. Next,

we set Co : 0.8 and computed a corresponding solution (see Figure 1.3(b)). In Table 1.2, we

compare quantities related to the shapes presented in Figure 1.2 and Figure 1.3.

Remark. It should be noted that the assumption, b V = bd Vd is more relevant to ascent

shapes than for a descending balloon that is being inflated. For a descending balloon that is being

inflated (such as a Solar Montgolfiere), the higher buoyancy values occur when the balloon is near

full inflation and the low values occur for low volumes. Nevertheless, the results presented in this

section are for demonstration purposes and illustrate how such shapes can be analyzed.

Natural shape with drag

In this section, we consider a balloon descending with a constant velocity and compute the cor-

responding design shape. We assume a balloon with a 6 kg payload and a balloon envelope with

density 8 kg/m 2. Additional design parameters are presented in Table 1.3.

In Figure 1.4, we present a family of design shapes parametrized by vB. In Figure 1.4(a),

v8 = 0. In Figures 1.4(b)-(d), we present design shapes with velocities -2 m/sec, -4 m/sec, and -6

14



Table 1.1: Design Parameters for Test Case

Parameter Description Design Value

bd Buoyancy 3.9020375e-04 lbf/ft 3

L Payload 13.22750 lbf

wf Film weight density 1.43369e-03 lbf/fd

wt Tape weight density 0 lbf/ft

ng Number of gores 27

Va Volume 62290 ft3

ga Gore length 76.738 ft

00 Angle at base 59.32 deg

maxZa Balloon Height 45.76 ft

2.maxRd Diameter 53.219 ft

Ar Surface Area 7727.26 ft2

WT Gross Weight 24.306 lbf

Table 1.2: Comparison of descending shapes with and without drag

Quantity Description 0.5 Vd 0.2 Vd

CD Drag coefficient 0 0.8 0 0.8

vB (ft/sec) Velocity of balloon 0 -4.59 0 -16.40

FD (lbf) Total drag 0 7.06 0 21.91

z0 (ft) Zero-pressure level 29.97 34.47 42.48 57.37

b (lbf/ft 3) Buoyancy 2ba 2bd 5bd 5bd

maxr(ft) Max radius 19.86 17.60 14.40 6.64

maxz (ft) Height 58.11 60.74 63.69 71.99
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Table 1.3: Parameter values for a natural shape design with drag

Quantity Value

Payload 6 kg

Film density 8 g/m 2

Pair 0.00827 kg/m 3

Pgas 0.00541 kg/m 3
b 280.764 kN/m 3

Table 1.4: Comparison of natural shapes with drag as a function of velocity

Velocity (m/sec) 0 -2 -4 - 10

Gore length (m) 36.87 30.08 33.86 23.68

00 (deg.) 68.06 67.03 63.84 43.60

Height (m) 20.42 20.06 19.07 14.88

Diameter (m) 26.63 26.05 24.38 16.12

Volume (m 3) 7291.98 6811.29 5555.57 1619.63

Surface Area (m 2) 1856.87 1774.93 1551.50 689.73

Mass (kg, MB +M_ad) 20.85 20.20 18.41 11.52

m/sec. As the velocity increases in magnitude, the volume of the design shape is reduced and the

ratio of diameter to height is also reduced. Once a design shape has been computed, we can also

determine partially inflated natural shapes as we did in the previous section.

In Table !,4. we present computed quantities related to the family of design shapes.

1.1.7 Remarks on natural-shape analysis

It is interesting to compare the results from Table 1.4 with that of a sphere of comparable volume.

For example, consider the case when vB = -10 m/sec. In this case, the volume, diameter, and

balloon weight of the natural shape is 1619 m3, 16.12 m, and 5.517 kg. For a sphere of the same

volume, the diameter is 14.56 m and its weight is 5.334 kg. Even thought the natural shape weighs

only 0.18 kg more than the sphere, it produces a drag equivalent to 6.89 kg, versus 5.623 kg for

the sphere. The natural shape produces over 22% more drag than a sphere with the same volume.

Aerodynamic drag can be incorporated into a model for inextensible partially inflated natural

shape balloons. While real balloons are not inextensible and the hoop stresses are not zero, the

results in this section can be applied to elastic balloons that are not axisysmmetric. In Section 2,

we show how to extend this approach to our EM-model for a more general class of balloon shapes.
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Figure1.4:Designshapeswithdrag(a)vB = 0 m/sec; (b) vB = -2 m/sec; (c) vo = -4 m/sec; (d) v8 = -10
m/sec.
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1.2 Aerodynamic loading of partially inflated balloons with lobes

In this section, we outline a mathematical model for the aerodynamic loading of a lobed balloon

shape. For simplicity and ease of exposition, we focus primarily on the case of drag on a descend-

ing balloon. We adapt the method of Chapter 1 to balloon shapes with and without lobes. Our

approach is to derive an expression for the potential energy due to drag, so it can be added to our

model for lobed energy minimizing shapes (i.e., LEM-shapes).

1.2.1 Background

A feature characterizing partially inflated scientific balloons is a lobe structure surrounding the

gas bubble. When the gas bubble is of insufficient volume, the balloon envelope will collapse,

forming folds of excess material and lobes. We present a mathematical model for a balloon shape

with such features that is subjected to aerodynamic loading. We formulate a variational principal

for the balloon system, and seek to determine a shape that minimizes energy subject to a volume

constraint. The energy includes film and load tape strain, film and load tape weight, hydrostatic

pressure, and drag.

Based on observations of real balloons, it is reasonable to assume that lobed structures are

periodic. Balloon shapes with lobes were investigated in [5] using variational techniques where

the energy of the balloon system included hydrostatic pressure and film weight. The energy of

the balloon system was minimized subject to constraints on the volume and the lengths of certain

fibers. Geometrically, the shapes in [5] possessed many features seen in real balloons: lobes

surrounding the gas bubble, a sphere-like top, internal folds of excess balloon fabric, and flat wing-

like structures (fins) hanging beneath the gas bubble. However, the formulation of the problem did

not include strain energy. In [2] and [4], the film and load tape strain energies were considered for

shapes modeled by a half-gore. In this work, we formulate a variational principal for a partially

inflated balloon subject to aerodynamic drag in such a way that a lobed structure can (but not

necessarily) form. While drag influences the balloon shape, lobes will form independently of drag.

In the following, let S(V,q,r) denotes a deformed balloon with volume V, q lobes, and r

gores per lobe. The total number of gores is ng and ng = rq. If it is clear from context, we will

omit certain arguments and write S instead of S( V, q, r). SF denotes a fundamental section of S

(SF is centered about a vertical plane of reflectional symmetry). By symmetry arguments, r is odd,

i.e., r = 2k + 1. A superscript j = I, 2,..., r denotes a quantity related to the jth gore of SF. When

r ----1, the balloon shape can be modeled by a half-gore. When r > 1, the balloon can have lobes.

Viewed from above, the discrete design shape will have the symmetries of a regular polygon with

20



ng sides. In general, S( V, q, r) will be invariant under the dihedral group Dq and viewed from

above, it will have the symmetries of a regular polygon with q sides. To simplify our exposition,

we will consider a natural-shape design with ng = 27 (note, G27 C Co c $3). A shape with D9

symmetry has nine lobes and each complete lobe is constructed from 3 gores.

1.2.2 Potential energy for aerodynamic drag

Aerodynamic drag can be introduced into our balloon shape model by adapting Eq. (1.6) appro-

priately. Consider an arbitrary facet in the triangulation of a balloon shape that is not part of a

fold. Let vo, vl, v2 denote the vertices, and Yo = Vl - vo, Yl = v2 - vl, Y2= vo - v2. We assume that

vo, Vl, v2 are ordered in such a way that the unit normal n = _0 × Yl/[Yo × _'ll points outward. For

a balloon descending with a velocity vB -- -vBk, the drag on typical triangle T is:

1 2 arccos(-k, n) rt/2,
Fo(T)= -_PairCOVBdA'k , 0< < (1.50)

0 otherwise,

where d_A = ½1e0× el [n. Adding up the drag contributions of each facet that contacts the atmo-

sphere yields the total potential energy of the drag on the balloon, i.e.,

ED(S) : _1 fsPairfDp2 dA'k. (1.51)

1.2.3 Mathematical model for aerodynamically loaded balloon shapes

In Table 1.5, we present design parameters that are used for the illustrations in this section. In the

following, the reader should refer to Figure 1.5 for notation related to the reference configuration.

Figures 1.6(a)_(b) shows a 3 gore lobe of a 27 gore design and Figures 1.7 shows the complete

shape.

Let V/, Vml,Vm,,Vm, Wmr, V r denote vertices along a circumferential fiber at the ith station of

Gore-j in the fiat reference configuration. Let Vl,Vml,_'rn,,Vm,Vmr , Vr be the corresonding vertices

in the deformed configuration. Note that Vm, and Vm are the same material point. Vertices Vm', vm

represent the end location of the respective left-half and right-half circumferential fibers (if these

fibers were to be extended in a straight line). Vertices of the type Vmr and Vr have three degrees of

freedom (DOF). Vertices of the type V,nt and vt have 0 DOF, since Vml is equal to IJmr on Gore-j

and vt in Gore-j is equivalent to Vr in Gore-j+ 1. Vertex Vmr = (Ymr, Zmr) has one DOE since Ymr

is allowed to vary between Ym and Yr. Similarly, Vml has 1 DOE Vertices in the form Vm, and Vm

are determined as follows:

Vmr, Ymr __ Ym,
Vm : I_mr + (1;mr -- Vr)" T,(Vm, Vmr , Vr), Ym < Ymr < Yr,

(Xmr- (Yr- Ym)cOs(rc/q),Ymr- (Yr- Ym) sin(rc/q),Zmr), Ymr >_ Yr,
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Table1.5:DesignParametersfor a27goreballoon

ParameterDescription DesignValue
bd Buoyancy 1.9459e-02 lbf/ft 3

L Payload 107 lbf

Wf Film weight density 0.00384 lbf/ft 2

wt Tape weight density 0.00301 lbf/ft

ng Number of gores 27
Vd Volume 5968.46 ft3

gd Gore length 36.0028 ft

0o Angle at base 51.44 deg

maxZd Balloon Height 22.935 ft

2. maxRa Diameter 23.764 ft
Ar Surface Area 1617.29 ft2

Wr Gross Weight 116.136 lbf

Figure 1.5: A segment of a gore in the reference configuration.
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Figure1.6:LEM-shapeat V = 0.15 Vd for a 27 gore design. (a) Inside view of 3-gore lobe; (b) Outside

view of a 3-gore lobe.
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Figure1.7:A completeLEM-shapeat V = 0.15 Vd for a 27 gore design with nine lobes.
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(Xmt- (Yt- Ym') cos(rc/q),ymt - (Yt - Ym') sin(n/q), Zml), Era' _-_ YI,
Vm' = I:ml "}- (Vml -- Vl) "T,(Vm', Wml, Vl), El < Yml < Ym',

Vml, Yml >- Ym',

where "_(Vm,Vmr, Vr) = (Ymr -- Ym)/(Yr - Ymr), and "C(Vm,,Vmt,Vz) = (Yml - Ym')/(Yr -- Ymr). The

vertex that lies at the top of the balloon has one DOF, since it can vary along the z axis only. Linear

equality constraints for the bounding planes of a fundamental section SF are in the form:

Ymr = 0, (1.52)

Yr-- tan(rc/q)Xr = 0. (1.53)

For lobed shapes, we impose the condition, 0 <_y < tan(rc/q)x, for vertices (x,y, z) with non-zero

degrees of freedom that are not constrained by Eqs. (1.52)-(1.53). These conditions insure that a

balloon shape will have Dq-symmetry. The variational principal for an energy minimizing balloon

shape is to minimize the total energy of the balloon system subject to a volume constraint over a

class of shapes Cq that incorporates geometry, symmetry, folds, etc. Next, we write out explicitly

the terms in the variational principal. To simplify notation, we use S to denote both the actual

surface and its approximation. The/th triangle of the jth gore in the reference configuration is

denoted by TtJ and the corresponding triangle in the deformed configuration is denoted by TtJ. The

it r L.jN __ rreference configuration is SF = ,-,j=] t=l T/and the deformed configuration is SF -- L-Jj_ 1t-jN 1 Tt J.

The total number of facets in a typical gore is N. The total number of facets in a typical gore that

lie on the outside of the balloon is N °. The current target volume is V. Components of the total

energy of the balloon system contributed by the jth gore of SF are:

(a) Hydrostatic Pressure:

(b) Film Weight:

(c) Tape Weight:

(d) Top Fitting Weight:

(g) Aerodynamic Drag:

EJgas: -b _., J ½z2k.d.4,
/:1

N

EJfilm = wf Z z{c°(TzJ)area(T/y),
I=l

nc+ l

E/apes = wt Z _21E/],
i=1

Eto p = WtopZtop_

EJrag:--lpairCDV2_area(Pxy[TtJ]),
F
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wherePxy[T] is theprojectionof facetT onto the xy-plane and the summation in 1' is over all

facets with unit normal making an angle less than re/2 with the -k direction (see Eq. (A.3),

(e) Tape Strain:
nc+l

S_Jap es = IKt Z (E{)2IE/I '
i=1

(f) Film Strain:
N

s Jfil m : 2 Z to ( TlJ ) " ( Tl j ) " Y(T/J)area(T/J) •
/=1

The volume is V j N°= 2Y.t= 1 V/j, where nc is the number of circumferential fibers, wf is the film

weight density, to(T) is the number of film layers in facet T, _ is the centroid of T/, wt is the tape

weight density, Kt is the tape stiffness, n is the Second Piola-Kirchoff stress, 5, is the Green strain,

e{ is the strain in the ith segment of the jth load tape, (12 is the centroid of the ith meridional

segment in the jth load tape, ]EJl is the length of the ith segment of the jth load tape, b is the

buoyancy, V/j is the volume contribution due to facet l of Gore-j. The height of the top fitting

above the base of the balloon is Ztop and its weight is Wtop. Summing the contributions over all

gores within a lobe and multiplying by q, we obtain the energy of the complete balloon:

r

ET°tal : q Z ( Ejas nt- Ejfilm ']-E/apes-l-EJdrag d- Stape sj + sJfilm) q-Etop,

j=l

(1.54)

and the volume constraint: V = q]_=_ V j. When r = 1, we call a shape S that minimizes ETotat

an energy minimizing shape (EM-shape). When r > 1, the shape has lobes and we refer to it as a

lobed EM-shape (LEM-shape).

1.3 Two-dimensional potential flows

In this section, we consider two dimensional uniform flow around an axisymmetric balloon shape.

Bernoulli's Law can be used to compute a pressure distribution.

1.3.1 Potential flow and the PDE Toolbox

In Fig. 1.8(a), we present the profile of a natural shape balloon (near full inflation) and in Fig. 1.8(b),

we present a partially inflated natural shape (at roughly 5%-inflation). We assume that the balloon

is stationary and far away from the balloon, the fluid moves parallel to the x-axis at a speed of

about 4 m/sec
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Figure 1.8: Axisymmetric balloon profiles: (a) full inflation; (b) 5% inflation

Let B be the rectangle, in the xy-plane,

B = {(x,y) ] LI < y < L3, L2 < x < Z4}

and 3B = 0Bz U 3B2 U OB3 U OB4, where

_B 1 =

_B2 =

0B3 =

OB4 =

where L] + L3 = O.

{(x,y) • B,y = L1},
{(x,y) • B,x = L2},
{(x,y)EB,y=L3},
{(x,y)e B,x=L4},

(1.55)

Let A denote the interior of the balloon shape (see Fig. 1.8), and let f_ be the region exterior

to A, but interior to B:

_=B\A.

In Fig. 1.9(a) and Fig. 1.9(c), we present a discretization of the region _ produced using

the PDE Toolbox that is exterior to the balloon for full and 5% inflation, respectively. The initial

meshes can be refined by the user or adaptively refined by PDE Toolbox (see Fig. 1.9(b) and (d)).

For the purpose of this exposition, we impose Neumann boundary conditions on 0B2 U OB4, and

Dirichlet boundary conditions on OA and OB1 tO_B3. We are led to the following boundary value

problem:

/N_ = O, one2,

lit = 0, on _A,

- 0, on _B2 tO_)B4,
bn

(BVP)
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q/ ---- --q/O, on _B1,

_t = _t0, on0B3,

where V is the stream function, and O/On is the normal derivative. In this case, the velocity field is

b_g. b_¢.

v = Uyl- UxJ. (1.56)

The F'DE Toolbox can be used to solve BVP, compute the velocity field, and to plot the corre-

sponding flow lines on the adapted mesh. The results are shown in Fig. 1.10. Under the assumption

of steady irrotational flow of a fluid with uniform density p, we have the following

P l lv[2 Constant, (1.57)-+_ _-
P

from which we can determine the pressure P; v is the velocity field (see Eq. 1.56). Eqn. (1.57) is

called Bernoulli's Law.

1.3.2 Concluding remarks

The PDE Toolbox is restricted to two dimensional flows, and we would have difficulties extending

this approach to a flow problem for a balloon with lobes. As outlined in Chapter 2, the methods in

Chapter 1 can be extended to full three dimensional problems. Drag is most likely the dominant

aerodynamic load for the inflation/deployment phase of a planetary balloon mission and so it makes

sense to develop further the methods of Chapters 1-2.
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1.4 Dynamic model for a descending spherical balloon

In the following, we consider a simple dynamic model for a descending spherical balloon that is

inflating with air. The motivation is a Mars solar Montgolfiere balloon. The total force on the

balloon is equal to the sum of the lift due to the gas, dead weight of the balloon system (payload

and balloon), and drag. In particular, we have (see [7, p. 11-15, Eq.(32)])

d2z

mv-_ = FLift -- g(m8 + mL) + Fo, 0 < t < tRd (1.58)

where

z = z(t) (altitude of balloon, geopotential height)

t - time

m8 - mass of balloon

mL - mass of payload

ro - radius of intake at base of balloon

mv = mB + mL + mg + CmPa(Z) V (virtual mass)

V = rCr2o(z(t) - zo) + Vo( Vo is the initial fill)

Pa -- Pa(Z) (density of atmosphere)

(3V) 1/3R = _- (radius of sphere with volume V)

AD -- -- rt max(R 2, ro2) (frontal area of spherical balloon)

" Ta = Ta(z) (temperature of atmosphere)

ro2fzz°mg = mg,o + 7_ p_(H)dH

Og = mg/V (mean density of gas)

FLift : gPa V- gmg

®

= gVP r. +0

FD = ½Pa(Z)CD d_tt
dz

- Ao

Co = 0.8 (for a descending balloon)

tRu - time when the balloon first reaches full inflation, i.e., R -- Ra

Units: Length-meters, Mass-kilograms, Time-seconds
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Table1.6:Parametervaluesfor asphericalballoon

Quantity parameter Value
Massof payload mL 6 kg

Diameter (at full inflation) 2Rd 15 m

Mass of balloon mB 5.65 kg

Film density pf 8 g/m 2

Initial velocity vB,0 -50 m/sec

Supertemperature ® 112 ° K

Table 1.7: Test Case data

Quantity parameter Value

t z zt z"

0 36520 -50 -9.230

87.6 34957 -10.99 0.068

720 30501 -4.06 0.008

1200 29378 -0.712 0.007

2400 29356 -0.030 -0.001

The term CmPa(Z) V is the added environmental mass that is assumed to be accelerated along

with the balloon, payload, and gas masses. For balloon applications, one typically assumes Cm - !--2

([7, p.g II-12]). The quantities 9a (see Eq. (C.5)) and Ta (see Eq. (C. 1)) are discussed in Appendices

A-B. For t > tRa, we assume that the balloon maintains a spherical shape with a radius of R = Ra,

and terms in Eq. (1.58) can be appropriately modified.

Next, we consider a test case based on the values presented in Table 1.6. When released,

we assume that the balloon is falling with a velocity of -50 m/sec. At the altitude where the

balloon is fuly inflated, we assume that the atmospheric pressure is 0.00827 mb; this corresponds

to an altitude of 34957 m. We estimate that the balloon must fall 1563 m in order to reach full

inflation, and so we assume the release altitude is 36520 m. Integrating the Eqn. (1.58) with the

iniital conditions of z_(0) = -50 and z(0) = 36520, we find that it takes 87.6 sec for the falling

balloon to inflate, i.e. tga = 87.6). After full inflation, fl(87.6) = - 10.99 m/sec., z"(87.6) -_ 0.068

rrdsec 2. Other values of z, z_, z" are displayed in Table 1.7. After about 720 sec, the balloon reaches

is minimum altitude and begins slowly oscillating about some mean altitude. In Figure 1.11, we

present data related to the U.S. Standard Atmosphere. In Figure 1.12, we present plots of (t,z(t))

and (t,zl(t)) forO < t < tRo.
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Figure 1.l l: Atmosphere related plots; (a) Ta - temperature; (b) Pa - pressure; (c) Pa - density;

(d) _ra_- temperature gradient.
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1.5 General Remarks on Aerodynamic Loading

The methods outlined in Chapters 1-2 are feasible approaches to incorporating aerodynamic load-

ing into balloon shape analysis. While the natural shape model described in Chapter 1 does not

include elasticity, it provides a good first step for determining the effects of aerodynamic loading.

The approach outlined in Chapter 2 can be adapted to nonaxisymmetric shapes and fits very nat-

urally in our program for modeling partially inflated balloon shapes by variational techniques and

energy minimization.

Adding these aerodynamic capabilities to our LEM-model, we would be able to provide an-

alytical capabilities that could be used to support missions such as the Mars Solar Montgolfiere

Balloon that is being studied by JPL, especially for the critical inflation/deployment phase. These

capabilities could also be applied to ultra long duration flights, including in-spool configurations,

constrained ascent shapes, and ascent shapes. While the analytical results of Chapter 1 are related

to axisymmetric shapes, with capabilities that are now being developed in kEMsolver and the ap-

proach outlined in Chapter 2, we should be able to develop a tool for analyzing aerodynamically

loaded balloons for a variety of configurations.
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Chapter 2

Lobed Balloon Shapes

A feature characterizing partially inflated scientific balloons is a lobe structure surrounding the gas

bubble. We present a mathematical model for such a balloon shape. We formulate a variational

principal for the balloon system, and seek to determine a shape that minimizes energy subject to a

volume constraint. The energy includes film and load tape strain, film and load tape weight, and

hydrostatic pressure. Numerical solutions are presented for a 24-gore balloon with and without

lobes.

2.1 Introduction

Ascent shapes of large scientific balloons are characterized by the formation of lobes surrounding

the gas bubble,- Based on observations of real balloons, it is reasonable to assume that these struc-

tures are periodic. Balloon shapes with lobes were investigated in [5] using variational techniques

where the energy of the balloon system included hydrostatic pressure and film weight. The energy

of the balloon system was minimized subject to constraints on the volume and the lengths of cer-

tain fibers. Geometrically, the shapes in [5] possessed many features seen in real balloons: lobes

surrounding the gas bubble, a sphere-like top, internal folds of excess balloon fabric, and flat wing-

like structures (fins) hanging beneath the gas bubble. However, the formulation of the problem did

not include strain energy. In [2] and [4], the film and load tape strain energies were considered

for shapes modeled by a half-gore. In the present work, we formulate a variational principal for a

partially inflated balloon in such a way that a lobed structure can (but not necessarily) form. Based

on observations, it appears that a lobed shape is somehow preferred over a cyclic shape without

lobes when the volume is significantly less than the float volume.

Applying our model to a representative shape (a 24-gore balloon design), we investigate by

parametric studies the existence of a minimum energy selection principal behind the formation of
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lobesin balloonshapes.In addition,wecomparevariousquantitiessuchastotalenergy,strain

energy,andmaximumprincipalstressresultantsfor balloonshapeswith a differentnumberof

lobes.Whentherearealargenumberof goresperlobe,wefoundthatshapeswithself-intersections

couldevolve.Bymonitoringtheevolutionof afamilyof LEM-shapesand(whennecessary)adding
aperturbationtobreakthesymmetry,wefoundthatin thecasesstudied,theself-intersectioncould
beavoided.

In thefollowing,we letS( V, q) denotes a deformed balloon with volume V and q lobes. The

number of gores per lobe is p and the total number of gores is ng = pq. If it is clear from context,

we will omit certain arguments and write S instead of S( V, q). SF denotes a fundamental section

of S (SF is centered about a vertical plane of reflectional symmetry). In the past, we assumed

that p was odd. However, in this treatment, we will only require that q divides ng. A superscript

j --- 1,2,..., p will be used to denote a quantity that is related to the jth gore of SF. When p = l,

the balloon shape can be modeled by a half-gore. When p > 1, the balloon can have lobes. Viewed

from above, a design shape will have the symmetries of a regular polygon with ng sides. In general,

S( V, q) will be invariant under the dihedral group Dq. Viewed from above, S( V, q) will have the

symmetries of a regular polygon with q sides. The set of balloon shapes invariant under Dq will

be denoted by Cq. To demonstrate our approach, we will consider a natural-shape design with

ng= 24, noting I

C24 c CI2 c C6 c C3 and C24 c C8 cc C4. (2.1)

We compute a family of balloon shapes with 024 symmetry and a family of balloon shapes with

Dk symmetry and k = 24, 12, 8,6,4,3 The numerical solutions we present here need not be all the

possible solutions. In Table 2.1, we list the combinations of p and q that are possible for a 24-gore

balloon. Table 2.1 contains design shape parameter values. Before we present our mathematical

model, it is a good to have a rough idea of the geometry of a partially inflated shape for various

inflation levels. Beginning at float altitude, we assume V = Vd (its design volume). At float,

the balloon envelope is fully deployed. As the volume decreases, the balloon becomes taller and

narrower. Shapes of this kind can be modeled by a half-gore and were the focus of [4]. For

0.6 Vd < V < Vd, we see that as the volume decreases, each deformed gore moves toward the

z-axis and an internal fold of excess material forms in the center of the gore. In an internal fold,

the exterior of the balloon comes into contact with itself. To reduce the number of unknowns, in

our treatment here, we will not use an explicit model of the internal fold. For a sufficiently small

volume, the inside of the balloon will come into contact with itself. Since the precise nature of the

1In the variational formulation of the balloon problem, the energy of the balloon shape will be minimized over some

Cq. However, due to Eq. (2.1)), it is possible in certain cases that a shape Sq, with q_ > q to evolve when minimizing

over Sq. If this does happen, we can add a perturbation to an intermediate shape in order to break the Oq, symmetry.
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GoresperLobe Numberof Lobes

P q
1 24

2 12

3 8

4 6

6 4

8 3

12 2

Table 2.1 : Parameter values for balloon

E (psi) v wf (lbf/in 2) wt (lbf/in) Kt (lbf) e (in) bd (lbf/in 3) Vd (in_) ng ga (in) WtoD(Ibf)
36000 0.82 2.667e-05 2.50833e-04 2810 0.0008 1.1330556e-05 10775165.571 24 433.15 !.5

distribution of folded material is unknown, we can still compute balloons shapes at small volumes

with D24 symmetry. However, when V < < Vd, it may not be reasonable to continue to assume

that D24 symmetry is preserved, because of the bulk of excess balloon material hanging at the base

of the balloon will prevent this from happening. Furthermore, there may be many other factors that

influence symmetry breaking, load tape slackness (length variation), gore size variation, folding of

the balloon stack, and other variations introduced while the balloon is in the launch spool.

2.2 Mathematical Model

In the numerical calculations presented here on strained lobed balloon shapes, we will use the

expression for the total energy Erotat as given by (1.54) and Co = 0 (no aerodynamic loading).

Furthermore, we will make the assumption that Vmt = Vm' = Vm = _mr. This will significantly

reduce the number of degrees of freedom, but we can still obtain reasonable estimates for the

maximum film stresses

2.3 Numerical results and discussion

Figures 2.1- 2.2 suggest that the total energy of a balloon shape is essentially independent of the

number of lobes when 0.5 V� Va < 1. For shapes near V� Va = 0.2, it appears that shapes with 6

or 12 lobes have a total energy about 3.5% less than the other shapes for that same volume (see
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Figure 2.1: Total energy for lobed shapes at V/Vd = 0.1,0.2, 0.3, 0.4, 0.5 (Units of energy Ibf-in.

Figure 2.1). Geometrically, the shapes $6 and Sl2 are very similar. In $6 there are two fiat wings

per lobe, leading to a total of 12 lobes. There is a similar pairing of the shapes, $4 with $8 and $3

with $6.

Remark These results suggest that it might be relatively easy for a strained partially inflated

lobed zero-pressure balloon to transition from a state with n-lobes to one with n + k lobes. It would

be of interest to study the stability of these shapes and to carry out a similar study for partially

inflated pumpkin balloons. This could shed some light on problems associated with the ascent and

deployment of pumpkin balloons.
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Figure2.5:24-goreballoon:24lobes/1goreperlobe
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Figure2,6:24-goreballoon:12 lobes/2 gores per lobe
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Figure2.7:24-goreballoon:8lobes/3goresperlobe
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Figure 2.8: 24-gore balloon: 6 lobes/4 gores per lobe
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Figure2.9:24-goreballoon:4 lobes/6goresperlobe
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Figure 2.10: 24-gore balloon: 3 lobes/8 gores per lobe
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Appendix A

Aerodynamic drag

In general, the drag on a submersed body exerted by a fluid that is in motion through the fluid is

FD : -- ½PairCDADIVB -- Vair [(VB -- Vair), (m. | )

where Co is the drag coefficient, Pair is the density of the air, Ao is the area of the projection of

the body on the plane perpendicular to the direction of motion, vn is the velocity of the balloon,

Vair is the velocity of the atmosphere (see [7, p. 11-13] and [10, Sec. 4.3]). In our applications, the

velocity of the balloon will be in the -l-k directions.

Aerodynamic drag can be introduced into our balloon model by adapting Eq. (A. 1) appropri-

ately. Consider an arbitrary facet in the triangulation of a balloon shape that is not part of a fold.

Let vo, vl, v2 denote the vertices, and _0 = vj - vo, _1 : v2 - vj, _2 = vo - v2. We assume that

vo, v_, v2 are ordered in such a way that the unit normal n = eo x el/le'0 × ell points outward. For

a balloon descending with a velocity vB = -vBk, the drag on typical triangle T is:

1 2 arccos(-k, n) r_/2,
FD(T)= -_PairCDVBdA'k , 0< < (A.2)

0 else,

where dA ----½leo × el In. Adding up the drag contributions of each facet that contacts the atmo-

sphere yields the total potential energy of the drag on the balloon, i.e.,

ED(S) : --½ _ Fo( Te ), (A.3)

where the summation in g_ is over all facets whose normal satisfies 0 < arccos(-k, n) < rt/2.
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Appendix B

Buoyancy of lifting gas

In this appendix, we summarize the background related to the calculation of the buoyancy b of the

lifting gas that is used for the hydrostatic pressure p. While there are numerous parameters and

combinations of those parameters that lead to the same b, we will provide some of the basic results

here. We follow the conventions in [7] and [9].

Archimedes Principle states that a body submerged in a fluid exerts a force equal to the weight

of the displaced fluid. In a balloon, the buoyant force or lift is

B = Wa - Wg, (B.l)

where Wa is the weight of the displaced air and Wg is the weight of the lifting gas. Furthermore,

we have Wa = gpaVg and Wg = gpaVg where g is acceleration due to gravity, Pa is the density of

the air, pg is the density of the lifting gas, and Vg is the volume of the gas. The volume of the gas

is nearly the same as the volume of the displaced air. In particular, we have

B = gVg(Pa - pg) (B.2)

or equivalently

From the equation of state, we have

n=gVgPa(1-P-_aa)"
(B.3)

PM

p = _-_, (B.4)

where P is pressure, M is molecular weight, T is absolute temperature, and R is the universal gas

constant. Using a subscript of 'a' or 'g' for quantities related to air or gas, respectively, we find

eJaM )B = gVgPa 1 PaTgMa " (B.5)
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If weassumethat

Eq.(B.5)simplifiesto

Pu Pa
- 1, (B.6)

B=gVgPa 1-Maa " (B.7)

In ballooning, the terms superpressure and supertemperature are often introduced (see [7, Section

II]). Superpressure is defined to be

and supertemperature is defined to be

n = -

o=

In this case, Eq. (B.5) can be expressed in the form,

( (Pa + rI)TaMg )B=gVgpa 1-pa(Ta+O)Ma • (B.8)

To determine the buoyancy b of a unit volume of gas in air, we can divide B by Vg and obtain,

b = gPa 1 - Ma

or the more general expression,

( (P_+II!TaMg'_b-=gOa 1-pa(Ta+®)Ma ] "

From Eq. (B.10), we see that b = b(pa, Ta,H,O, Mg,Ma),

(B. 1O)
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Appendix C

U.S. Standard Atmosphere

The U. S. standard atmosphere layers are presented in [9, pg. 15]. Data is available on eight

layers. For each layer, a base layer altitude and top layer altitude is given with corresponding

values for temperature, pressure, and density. Properties and assumptions are listed in [9, pg. 7].

In the following, H is the geopotential height and Z is the geometric height. Within each layer, the

temperature is assumed to vary linearly from the base of the layer to the top of the layer, i.e.,

!

Ta : TB,iq-Li(H-HB,i, Hi < H <_Hi+l, (C.I)

where Ts,i is the temperature at the base of the ith layer, H/is the base of layer i (the top of layer

i - 1), and L[ : dT/dH in layer i. From [9, Eq. (12)], we have dPa = -goPadH

- dPa. (C.2)
goMa _,

From Eq. (C. 1) and Eq. (C.2), we have

dH

TB+ L'(H-HB)

R dPa

goM,_ P_'

which can be integrated to yield the height as a function of Pa, i.e.,

RT8 In Pb
HB + g-_a -_a'

H=

The density of air Pa is a function of geopotential height where

?a(H)Ma

pa(H)- RTa(H) '
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Table C. 1: Physical constants for standard atmosphere

Quantity Value
Sea level air density 1.2250 kg/m s

Sea level temperature

Sea level pressure
Sea level molecular weight

Sea level molecular helium

Sea level molecular hydrogen
Sea level molecular ammonia

Universal gas constant

15° C = 288.15 o K

9.80665 m/sec 2

28.9644 kg/kg-mol

28.9644 kg/kg-mol

2.0159 kg/kg-moi

4.0026 kg/kg-mol

8314.32 JfK(kg-mol)

and Pa,H, and Ta are related by Eqs. (C.1) and (C.4). Related parameters needed to calculate

atmospheric properties are given in Table C. 1. Assuming a standard atmosphere, the buoyancy is

given by Eq. (B.9) (or Eq. (B.10)), where pa(H) is given by Eq. (C.5), Ta is given by Eq. (C.1),

and H and Pa are related by Eq. (C.4).
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